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Chapter 0

About this book

Last edited 2020-03-23 23:40

Disclaimer.
This was a work in progress. The author has ceased active involvement with
Mercury and there are (currently) no plans to continue work on it.

What is this book for?
A basis for courses teaching or using Mercury. A tutorial for experienced
programmers wishing to learn Mercury.

What version of Mercury is used in the book?
Any recent release-of-the-day (ROTD) compiler will do. The text as of today
(10 April 2005) will work fine for Mercury release 0.12.

Who is it aimed at?
Students who have completed at least one year of a computer science de-
gree, been exposed to a strongly, statically typed functional programming
language (e.g., ML, Haskell, Miranda), and have some reasonable program-
ming experience.

What is this book about?
This book is a tutorial on programming in Mercury. The book should pro-
vide the reader with enough information to become a competent Mercury
programmer and knowledge sufficient to understand the Mercury Reference
Manual, the Mercury Library Reference Manual and the Mercury Users’
Guide. The book will describe key features of Mercury in detail, including
the type system, the mode and determinism systems, and programming with
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4 CHAPTER 0. ABOUT THIS BOOK

nondeterminism.

What is this book not about?
This book will not teach you how to program in general, nor will it teach
you a great deal of theory. It will not teach you how type inference works; it
will (probably) not teach you about Herbrand universes; it will not include
an extended treatise on IO in declarative programming languages; it will not
(in the first place) cover black-belt Mercury programming techniques (e.g.
dynamic type casts for non-ground types).

Where is the introduction?
I plan to write the introduction last. It will include a brief description of
“what Mercury is all about” and an explanation of what the book is trying
to do.



Chapter 1

Mercury By Example

Last edited 2020-03-23 23:40

This chapter aims to convey through examples a basic feeling for how Mer-
cury works. Because this is the first chapter, we may gloss over some fine
detail and allow ourselves a certain latitude in precision, but this will not
worry us as we will correct these deficiencies in later chapters. The approach
taken here is to start by presenting the “obvious” solution to a problem and
then introduce features of Mercury that allow for more elegant or efficient
programs.

1.1 Hello, World!

It is slightly unfortunate that the “Hello, World!” program introduces no
less than three advanced Mercury concepts, but since tradition dictates that
tutorial texts start with “Hello, World!” we’ll just have to jump straight in
with the knowledge that things will get easier thereafter.

We’ll start by presenting the complete program which we’ll assume we’ve
typed into a file called hello.m:

:- module hello.

:- interface.

:- import_module io.

:- pred main(io::di, io::uo) is det.

:- implementation.
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6 CHAPTER 1. MERCURY BY EXAMPLE

main(IOState_in, IOState_out) :-

io.write_string("Hello, World!\n", IOState_in, IOState_out).

Let’s go through this line by line.

:- module hello.

Every module must start with a declaration like this giving the name of the
module; the Mercury compiler will expect a module called hello in a file
called hello.m.

:- interface.

An interface declaration introduces the part of module describing the
things we are going to export (i.e., allow users of the module to see).

:- import_module io.

This import_module declaration says that we need to use some of the names
exported by the io module, which is part of the standard Mercury library.

:- pred main(io::di, io::uo) is det.

This says that we are going to define a predicate called main with two ar-
guments of type io (which happens to be defined in the io module), the
first of which is a destructive input argument, and the second of which is
a unique output argument; the is det part tells us that main is a deter-
ministic predicate — that is, main always succeeds and will always compute
the same output given the same input (we will see later that some Mercury
predicates can fail and some can have more than one solution).

Every Mercury program needs to export a predicate called main, which the
compiler takes as the starting point for the Mercury program as a whole.

:- implementation.

Everything after an implementation declaration is considered private im-
plementation detail not visible to other users of the module.



1.1. HELLO, WORLD! 7

main(IOState_in, IOState_out) :-

io.write_string("Hello, World!\n", IOState_in, IOState_out).

Finally, we have a clause defining main. A clause comprises a head and body
separated by a :- symbol. The head of this clause tells us that this is a defi-
nition for main and names its two arguments IOState_in and IOState_out.
The body of the clause, which is executed when main is called, consists of a
single goal calling io.write_string (i.e., the write_string predicate de-
fined in the io module) with a message (Mercury interprets the \n sequence
in the string argument as a literal newline character) and the two IOState

arguments.

Program variables in Mercury always start with a capital letter or under-
score, while names of predicates, types, modules and so forth do not.

We can compile and run hello.m as follows ($ indicates the command line
prompt):

$ mmc --make hello

Making Mercury/int3s/hello.int3

Making Mercury/cs/hello.c

Making Mercury/os/hello.o

Making hello

$ ./hello

Hello, World!

Et voilà! (By default, mmc --make will construct a local Mercury directory,
if necessary, to hold intermediate files generated during compilation.)

At this point the reader is probably wondering about the meaning of the io

type arguments IOState_in and IOState_out, and the strange di and uo

argument modes. The short answer is that every predicate that performs I/O
has to have an io type input argument describing the state of the world at
the time the predicate is called and an io type output argument describing
the state of the world after the call. This is how Mercury allows programs
to communicate with the outside world without hidden side effects which
would compromise its mathematical integrity.

Because it doesn’t make much sense to try reusing an old io state — you
can’t go back in time — io states are unique. This is where the di and
uo argument modes come in: they are just like the ordinary in and out

argument modes we’ll meet in the next section, except that they also specify
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uniqueness. The Mercury compiler will not allow programs to copy unique
values or reuse dead ones: there is only ever one “live” I/O state at a time in
a running Mercury program. This property guarantees that I/O operations
occur in the intended order.

So what if we want to do more than one I/O operation? In this case we
have to give names to each of the intermediate io states:

main(IOState_in, IOState_out) :-

io.write_string("Hello, ", IOState_in, IOState_1),

io.write_string("World!", IOState_1, IOState_2),

io.nl(IOState_2, IOState_out).

The first call to io.write_string takes IOState_in as an input, destroys
it in the process of writing its string argument, and produces IOState_1 as
its result. Then the second call to io.write_string destroys IOState_1

and produces IOState_2. Finally, io.nl (which just writes out a newline),
destroys IOState_2 and returns IOState_out, which is the result of the call
to main.

Naming all these intermediate states quickly becomes tedious, so Mercury
provides us with syntactic sugar in the form of state variables:

main(!IO) :-

io.write_string("Hello, ", !IO),

io.write_string("World!", !IO),

io.nl(!IO).

This code is transformed by the compiler into something equivalent to the
preceding example: each occurrence of the !IO state variable actually stands
for two normal variables, which are given intermediate names in the “obvi-
ous” way (the full details of the state variable transformation can be found
in the Mercury Reference Manual). Note that there is no special significance
in the name IO, which we merely use by convention.

Points to remember

• A module starts with a module declaration and is followed by an
interface section and an implementation section.

• The interface section declares the things that are exported by the
module.
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• All declarations start with a :- symbol.

• Declarations and clauses always end with a full stop.

• We have to import a module before we can use things exported by
that module.

• Every Mercury program must export a predicate called main.

• Predicates are defined by clauses, which go in the implementation
section.

• Variable names start with a capital letter; names of modules, types,
predicates and so forth start with a lower-case letter or use symbols
(e.g., the int module defines + to mean integer addition).

• Every predicate that performs I/O must have an io::di argument
and an io::uo argument and must be deterministic.

• We use state variables to avoid having to explicitly name every io

state.
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1.2 The Fibonacci numbers

Another great computer science tradition is defining a function to calculate
numbers in the Fibonacci series: 1 1 2 3 5 8 13 21 34. . . where, apart from
the leading 1s, each number is the sum of the preceding two.

As before, we’ll start by showing a complete program and then look at the
interesting parts in more detail.

:- module fib.

:- interface.

:- import_module io.

:- pred main(io::di, io::uo) is det.

:- implementation.

:- import_module int.

:- pred fib(int::in, int::out) is det.

fib(N, X) :-

( if N =< 2

then X = 1

else fib(N - 1, A), fib(N - 2, B), X = A + B

).

main(!IO) :-

fib(17, X),

io.write_string("fib(17, ", !IO),

io.write_int(X, !IO),

io.write_string(")\n", !IO).

Building and running fib.m, we find that. . .

$ mmc --make fib

Making Mercury/int3s/fib.int3

Making Mercury/cs/fib.c

Making Mercury/os/fib.o

Making fib

$ ./fib

fib(17, 1597)
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The first thing to note is the import_module declaration at the start of the
implementation section. We need to import the int module from the Mer-
cury standard library because it defines all the operations on integers, such
as addition and comparison. We import it in the implementation section
rather than the interface section because that’s the only place we refer to
names defined in the int module.

Next the declaration

:- pred fib(int::in, int::out) is det.

says that we are going to define a predicate fib taking two int arguments,
an input and an output, which always succeeds and always computes the
same output given the same input.

fib(N, X) :-

( if N =< 2

then X = 1

else fib(N - 1, A), fib(N - 2, B), X = A + B

).

The body of the fib definition uses an if-then-else goal to decide what
to do; the else part is not optional; and the whole thing appears in paren-
theses. The condition N =< 2 succeeds if N is less than or equal to 2 and
fails otherwise (we’ll learn more about semidet predicates like =< in later
examples). If N =< 2 then the unification X = 1 is executed. Otherwise fib
is called twice to compute the preceding two Fibonacci numbers in A and B,
and X is unified with their sum (note that we don’t need to declare A and B

anywhere).

Finally we have

main(!IO) :-

fib(17, X),

io.write_string("fib(17, ", !IO),

io.write_int(X, !IO),

io.write_string(")\n", !IO).

which calls fib(17, X), unifying X with the result of computing the 17th
Fibonacci number, then writes out the answer.
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Now, just as N - 1 computes N minus 1 and A + B computes the sum of A
and B, it is possible to define fib so that fib(N) computes the Nth Fibonacci
number:

:- func fib(int) = int.

fib(N) = X :-

( if N =< 2

then X = 1

else X = fib(N - 1) + fib(N - 2)

).

The func declaration introduces fib as a function with an int argument
computing an int result. Mercury assumes that the input arguments to a
function have mode in, the result has mode out, and that the function as a
whole is det.

Functions are also defined using clauses, the only difference being that the
head of a function clause takes the form FuncCall = Result.

Having redefined fib as a function, we also have to change how it is called
in main:

main(!IO) :-

io.write_string("fib(17) = ", !IO),

io.write_int(fib(17), !IO),

io.nl(!IO).

Here is one last refinement we might like to make to our definition of fib:

fib(N) = ( if N =< 2 then 1 else fib(N - 1) + fib(N - 2) ).

By using an if-then-else expression we can move the entire body into
the head of the clause. Since the clause now has an empty body, Mercury
requires that we omit the :- part.

It is worth noting that all three of our definitions are computationally identi-
cal and there is no difference in the code generated by the Mercury compiler.
Whether to use a predicate or function is largely a matter of taste; a good
rule of thumb is that if a predicate has a single output argument, and is
deterministic, then it is probably better expressed as a function.
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Points to remember

• Import modules in the implementation section only if they are only
referred to in the implementation section.

• Non-unique arguments (typically non-io arguments) normally use the
in and out argument modes.

• You can use functions to make your code more readable.

• if-then-else can be used as a goal and as an expression; it should
appear in parentheses and the else part is mandatory.

• If a clause of a predicate or a function has an empty body (because
all the computation is described in the head), then the :- must be
omitted.
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1.3 Simple input

We can extend our Fibonacci program to read in N rather than have it
hard-coded by changing the definition of main:

:- import_module list, string.

main(!IO) :-

io.read_line_as_string(Result, !IO),

( if

Result = ok(String),

string.to_int(string.strip(String), N)

then

io.format("fib(%d) = %d\n", [i(N), i(fib(N))], !IO)

else

io.format("That isn’t a number...\n", [], !IO)

).

The list and string standard library modules are imported in the imple-
mentation section because we use them in the definition of main (the io

module has already been imported in the interface section).

main begins by calling io.read_line_as_string, which reads a whole line
of input up to and including the next newline character. If all goes well then
Result ends up unified to a value ok(String), where String is the string
of characters read in and ok is a “tag” known as a data constructor. Other
possibilities for Result are eof, indicating the end-of-file has been reached,
and error(ErrorCode), indicating that something went wrong.

Then an if-then-else decides what to do. The if condition succeeds if
Result is an ok value (unifying String with the argument) and if
string.to_int(string.strip(String), N) succeeds. The string.strip
function returns its argument minus any leading and trailing whitespace, in-
cluding the terminating newline character, while the predicate string.to_int
succeeds if its first argument is a string of decimal digits (unifying N with
the corresponding number), and fails otherwise.

It’s worth taking a slightly closer look at the unification in the if part of
the if-then-else goal:

Result = ok(String)
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We know that Result has a value at this point, so this kind of unifica-
tion is known as a deconstruction: it only succeeds if the value in Result

matches the pattern ok(something), in which case it unifies String with
the something.

The then and else arms of the if-then-else goal call the io.format

predicate, which is rather like C’s printf function. The first argument is a
format string (where %d indicates a decimal integer, %f indicates a floating
point value, %s indicates a string, and %c indicates a character) and the
second argument is a list of the corresponding values in [ brackets ], tagged
with i, f, s or c for int, float, string or char values respectively. Thus
in

io.format("fib(%d) = %d\n", [i(N), i(fib(N))], !IO)

the int N is printed instead of the first %d in the format string and the int

result of fib(N) is printed instead of the second %d. If N = 17 we’d expect
this goal to output

fib(17) = 1597

Just as the Mercury compiler doesn’t know how to do anything with integers
unless you import the int module, it doesn’t know anything about lists
unless you import the list module. So if you want to use io.format then
you also have to import the list and string modules.

Okay, so far so good. What if we want to input more than one number in a
loop? That’s easy to arrange:

main(!IO) :-

io.read_line_as_string(Result, !IO),

( if

Result = ok(String),

string.to_int(string.strip(String), N)

then

io.format("fib(%d) = %d\n", [i(N), i(fib(N))], !IO),

main(!IO)

else

io.format("I didn’t expect that...\n", [], !IO)

).
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Now the then branch calls main recursively to read in another number.
Being a declarative language, recursion is Mercury’s only looping construct.
However, as with any decent declarative language compiler worth it’s salt,
tail recursion like this is just as efficient as a while or for loop in any other
language.

Firing up the compiler we get

$ mmc --make fib

Making Mercury/int3s/fib.int3

Making Mercury/cs/fib.c

Making Mercury/os/fib.o

Making fib

$ ./fib

| 10

fib(10) = 55

| 17

fib(17) = 1597

| 20

fib(20) = 6765

| ^D

I didn’t expect that...

(The |s indicate input from the user and don’t actually appear on the screen.
^D indicates the user typing Ctrl-D to close the input stream; Windows users
should use Ctrl-Z.)

It would be good to handle the end-of-file condition more gracefully. The
obvious way to do that is to add another case to the if-then-else:

main(!IO) :-

io.read_line_as_string(Result, !IO),

( if

Result = eof

then

io.format("bye bye...\n", [], !IO)

else if

Result = ok(String),

string.to_int(string.strip(String), N)

then

io.format("fib(%d) = %d\n", [i(N), i(fib(N))], !IO),

main(!IO)
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else

io.format("I didn’t expect that...\n", [], !IO)

).

Observe the deconstruction test of Result with eof — the eof data con-
structor has no argument list and indeed it is a syntax error to write eof().

Before we leave our fib example, let us introduce Mercury’s switch goals.
A switch goal is rather like C’s switch statement and consists of a set of
alternatives testing a given variable against different possible values it might
have. Here is main rewritten to use a switch goal:

main(!IO) :-

io.read_line_as_string(Result, !IO),

(

Result = eof,

io.format("bye bye...\n", [], !IO)

;

Result = ok(String),

( if string.to_int(string.strip(String), N)

then io.format("fib(%d) = %d\n", [i(N), i(fib(N))], !IO)

else io.format("that isn’t a number\n", [], !IO)

),

main(!IO)

;

Result = error(ErrorCode),

io.format("%s\n", [s(io.error_message(ErrorCode))], !IO)

).

A sequence of goals separated by semicolons is called a disjunction (the
semicolon is usually pronounced “or”). If each disjunct deconstructs a par-
ticular variable against a set of mutually exclusive possibilities, then the
disjunction as a whole is a switch. In general it is good style to use a switch
rather than a sequence of if-then-else goals since then, in most cases, the
Mercury compiler will tell you if you’ve forgotten a possibility or counted
the same possibility twice.

Points to remember

• Some types (such as the result type of io.read_line_as_string) use
different data constructors for different values. These values can be
tested using deconstruction unifications.
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• A data constructor with no arguments, such as eof, is not followed by
an argument list.

• io.format is Mercury’s version of C’s printf. To use it you must
import list and string as well as the io module.

• You should omit the parentheses around an if-then-else that im-
mediately follows the else part of another if-then-else.

• A disjunction is a sequence of goals separated by semicolons.

• A switch is a disjunction where each disjunct tests a particular variable
against a different possibility. Where applicable, switches are generally
preferable to if-then-elses.
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1.4 rot13

Let’s move on to a different example. This time we are going to implement
the rot13 “encryption” algorithm, which works by rotating the Roman al-
phabet by 13 places — in other words, abcdefghijklmnopqrstuvwxyz in the
input becomes nopqrstuvwxyzabcdefghijklm in the output. Decryption is
simple: just use rot13 a second time! While rot13 has the cryptographic
strength of damp tissue paper, it is sometimes useful for obscuring informa-
tion in an e-mail that the recipient may not yet wish to know, such as who
won the Grand Final.

Here’s a first cut at a solution:

:- module rot13.

:- interface.

:- import_module io.

:- pred main(io::di, io::uo) is det.

:- implementation.

:- import_module char, list, string.

main(!IO) :-

io.read_char(Result, !IO),

(

Result = ok(Char),

io.write_char(rot13(Char), !IO),

main(!IO)

;

Result = eof

;

Result = error(ErrorCode),

io.format("%s\n", [s(io.error_message(ErrorCode))], !IO)

).

:- func rot13(char) = char.

rot13(Char) = ( if Char = ’a’ then ’n’

else if Char = ’b’ then ’o’

...

else if Char = ’z’ then ’m’

else if Char = ’A’ then ’N’
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else if Char = ’B’ then ’O’

...

else if Char = ’Z’ then ’M’

else Char

).

While this plainly works:

$ mmc --make rot13

Making Mercury/int3s/rot13.int3

Making Mercury/cs/rot13.c

Making Mercury/os/rot13.o

Making rot13

$ ./rot13

| Port Adelaide beat the Brisbane Lions 113 to 73 in the Grand Final.

Cbeg Nqrynvqr orng gur Oevfonar Yvbaf 113 gb 73 va gur Tenaq Svany.

| Cbeg Nqrynvqr orng gur Oevfonar Yvbaf 113 gb 73 va gur Tenaq Svany.

Port Adelaide beat the Brisbane Lions 113 to 73 in the Grand Final.

it’s hardly going to win prizes for elegance or efficiency. A more experienced
Mercury programmer might code rot13 like this:

:- func rot13(char) = char.

rot13(CharIn) = ( if rot13_2(CharIn, CharOut) then CharOut else CharIn ).

:- pred rot13_2(char::in, char::out) is semidet.

rot13_2(’a’, ’n’).

rot13_2(’b’, ’o’).

...

rot13_2(’z’, ’m’).

rot13_2(’A’, ’N’).

rot13_2(’B’, ’O’).

...

rot13_2(’Z’, ’M’).

There are three new things here: the semidet determinism category; clauses
with the arguments already “filled in”; and using more than one clause to
define a predicate.



1.4. ROT13 21

First off, the semidet determinism category means that rot13_2 will, for
any given input, either fail or have a single solution for the output. Looking
at the code we might guess (correctly) that rot13_2(’z’, X) should succeed
unifying X = ’m’ (and never anything else), while rot13_2(’7’, X) would
fail.

Secondly, a clause like

rot13_2(’a’, ’n’).

is just syntactic sugar for

rot13_2(V1, V2) :- V1 = ’a’, V2 = ’n’.

Since we know from the pred declaration for rot13_2 that V1 is an input
and V2 an output, the unification V1 = ’a’ must be a deconstruction test
and, if that succeeds, then the construction unification V2 = ’n’ is carried
out (a construction unification always succeeds because the “destination”
variable, V2 in this case, does not have a value before this point).

Finally, a sequence of clauses is syntactic sugar for a single clause whose
body is a disjunction. Hence our code is transformed by the compiler into
this:

rot13_2(V1, V2) :- ( V1 = ’a’, V2 = ’n’

; V1 = ’b’, V2 = ’o’

...

; V1 = ’z’, V2 = ’m’

; V1 = ’A’, V2 = ’N’

; V1 = ’B’, V2 = ’O’

...

; V1 = ’Z’, V2 = ’M’ ).

The astute reader will immediately identify this as a switch on V1 because
each disjunct tests the input V1 for a different possible value. One of the
good things about switches is that the Mercury compiler will generate very
efficient code for them, using a lookup-table or hash-table perhaps, which
will certainly out-perform the long if-then-else chain in our first attempt.

(As an aside, the is semidet determinism declaration for rot13_2 tells the
Mercury compiler that this predicate is expected to fail in some cases, so



22 CHAPTER 1. MERCURY BY EXAMPLE

it will not warn us about missing possible values for the first argument.
In the fib program the switch had to be exhaustive, so it could not fail,
because main was declared to be det. Had we missed a possible case out
of that switch, the compiler would have reported the missing case as an
error. Similarly, because rot13_2 cannot have more than one solution for
any input, the compiler will report an error if we have duplicate clauses
matching the same input. The compiler can’t warn us about such problems
if we use if-then-else chains. Try it and see what happens.)

Note that if we felt so inclined, we could make rot13_2 deterministic by
including the translation of every possible character! Of course, there are
many ways of coding rot13 and while our implementation may not be the
most concise, it is quite efficient and very easy to understand. Either way,
our aim here was to look more closely at the concept of semideterminism
and introduce the technique of making code more readable by using multiple
clauses to define a predicate or function.

Points to remember

• Literal character values in Mercury are normally enclosed in single
quotes. Some characters which the Mercury parser would normally
expect to see used as infix function symbols, such as + and *, also
need to be enclosed in parentheses: (’+’) and (’*’). Full details of
how special characters should be written can be found in the Mercury
Reference Manual.

• The semidet determinism category means that a predicate can have at
most one solution for a given set of inputs (it fails if it has no solution
for the given inputs).

• Semideterministic predicates therefore often appear in the conditions
of if-then-else goals.

• “Filling in” the arguments of a clause is just shorthand for omitting
the equivalent unification goals.

• The compiler views a predicate or function definition comprising sev-
eral clauses as a single disjunction. Multiple clauses are often easier
to read than a large disjunction.
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1.5 Cryptarithms

In this example we introduce nondeterminism to demonstrate a little of
what differentiates Mercury from conventional programming languages. A
cryptarithm is an equation (usually just an addition) where the digits of
each number have been replaced by letters, DOG + ANT = CAT for example;
a solution is a mapping from letters to digits that satisfies the equation.
Leading letters cannot stand for zero and each letter must stand for a distinct
digit. Here’s a Mercury program to solve this particular cryptarithm:

:- module crypt.

:- interface.

:- import_module io.

:- pred main(io::di, io::uo) is cc_multi.

:- implementation.

:- import_module int, list, string.

main(!IO) :-

io.format("DOG + ANT = CAT\n", [], !IO),

( if

Ds0 = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9], C0 = 0,

pick(Ds0, G, Ds1),

pick(Ds1, T, Ds2), S1 = G+T+C0, T = S1 mod 10, C1 = S1/10,

pick(Ds2, O, Ds3),

pick(Ds3, N, Ds4), S2 = O+N+C1, A = S2 mod 10, C2 = S2/10, A \= 0,

pick(Ds4, D, Ds5),

pick(Ds5, A, Ds6), S3 = D+A+C2, C = S3 mod 10, C3 = S3/10, C \= 0,

pick(Ds6, C, _),

C3 = 0

then

DOG = 100 * D + 10 * O + G,

ANT = 100 * A + 10 * N + T,

CAT = 100 * C + 10 * A + T,

io.format("%d + %d = %d\n", [i(DOG), i(ANT), i(CAT)], !IO)

else

io.format("has no solutions\n", [], !IO)

).

:- pred pick(list(int)::in, int::out, list(int)::out) is nondet.
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pick([X | Xs], X, Xs).

pick([X | Xs], Y, [X | Zs]) :- pick(Xs, Y, Zs).

At this early stage we won’t explain exactly how this program works. In-
stead, we will describe what it does and leave the technical explanation to
later chapters.

The interesting part of this program is the condition of the if-then-else

goal. The trick to understanding this code fragment is to consider it as a set
of constraints on a solution rather than as a series of computations. (Con-
centrating on the “what” rather than the “how” is a hallmark of declarative
programming.)

Ds0 is the list of digits from 0 to 9, Ds1 is Ds0 with the digit for G removed,
Ds2 is Ds1 with the digit for T removed, Ds3 is Ds2 with the digit for O

removed, and so forth. In this way we ensure that each of D, O, G, A, N, T
and C are different.

The digits for each letter are selected nondeterministically using the pick

predicate. The goal pick(Ds0, G, Ds1), for instance, picks a digit for G

from Ds0 and leaves the remaining digits in Ds1. Since Ds0 contains ten
members, there are ten possible solutions for G, and Ds1 will have nine
members.

C1 is the carry from the units column, C2 is the carry from the tens column,
C3 is the carry from the hundreds column; we introduce C0 as a “carry in”
of zero to give the program a regular structure.

The goal S1 = G + T + C0, T = S1 mod 10 provides the constraint for the
units column. We do the same thing for the tens and hundreds columns.

The goals A \= 0 and D \= 0 ensure that we don’t have any zeroes in the
hundreds column (‘\=’ means “not equal to”), while C3 = 0 ensures that
there is no carry left over from the hundreds column.

Eventually either a set of solutions to the pick goals will be found that is
consistent with the other constraints or, if no such set exists, the condition
of the if-then-else will fail.

At this point we can explain the cc_multi determinism category for main,
which is different to det which we’ve used in all the preceding examples.
cc_multi stands for committed choice multideterministic, which means that
although this predicate may have multiple possible answers (there may be
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multiple solutions to main’s if-then-else condition) we will only be getting
one of them! This extra constraint is necessary to allow a predicate with
more than one possible solution to perform I/O; since we’re not allowed to
backtrack over predicates that do I/O, we have to state that we’re content
for main to stick to the first solution it finds, whichever one that happens
to be.

Now to outline how pick works; here is its definition again:

:- pred pick(list(int)::in, int::out, list(int)::out) is nondet.

pick([X | Xs], X, Xs). % Clause 1.

pick([X | Xs], Y, [X | Zs]) :- pick(Xs, Y, Zs). % Clause 2.

The first argument is an input, the second and third are outputs. The
nondet determinism category means that pick can have any number of
solutions, including zero, depending upon its input. Clause 1 says that we
can pick an item from a list whose first (head) item is X and whose tail is
Xs by returning X as the chosen item and Xs as the remainder. Clause 2
says that we can also pick an item from our list by choosing some Y from
Xs, leaving Zs, and returning Y as the chosen item and the list [X | Zs] as
the remainder.

For example, The goal pick([1, 2, 3], X, Xs) has three possible solu-
tions:

pick([1, 2, 3], 1, [2, 3]) % By clause 1.

pick([1, 2, 3], 2, [1, 3]) % By clause 2 because

pick([2, 3], 2, [3]) % by clause 1.

pick([1, 2, 3], 3, [1, 2]) % By clause 2 because

pick([2, 3], 3, [2]) % by clause 2 because

pick([3], 3, []) % by clause 1.

Each of these solutions will be enumerated by Mercury on backtracking.
(Note that the goal pick([], X, Xs) has no solution because there are no
clauses matching the empty list [] as an input.)

Don’t worry if much of this seems confusing: once some facility with think-
ing declaratively (i.e., “what” rather than “how”) is acquired, one can look
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at predicates like pick and complicated goals like the condition of this
if-then-else and immediately understand what is meant. The thing to
carry away from this example is the ease with which Mercury allows us to
describe a solution to a complex search problem. We have done very little
more than write a logical specification of the problem using Mercury syn-
tax, all the tedious operational details are handled for us by the compiler!
Elegance of this sort is one of the key things that makes Mercury such an
attractive programming language.

Anyway, after all that hard work, let’s just prove that all this magic actually
works:

$ mmc --make crypt

Making Mercury/int3s/crypt.int3

Making Mercury/cs/crypt.c

Making Mercury/os/crypt.o

Making crypt

$ ./crypt

DOG + ANT = CAT

420 + 531 = 951

Success!

Points to remember

• Nondeterministic predicates such as pick can have multiple solutions
for a given set of inputs. Mercury handles this by backtracking to the
most recent choice point when a later goal fails.

• As far as possible, try to think declaratively rather than operationally:
focus on what it is that is being computed rather than how the com-
putation should proceed. Leave as much of that sort of detail to the
compiler as you can.

• Unification goals are quite versatile: they can denote constructions,
deconstructions, and equality tests.



Chapter 2

The Mercury type system

Last edited 2020-03-23 23:40

In this chapter we describe the primitive (i.e., built-in) Mercury types, and
how to define and use new types. The style of this chapter is a little dry, so
we advise the reader to skim through it the first time around, and then dip
back into it for reference as occasion demands.

Mercury uses an expressive, statically checked type system similar to that
of ML and Haskell. The type system is expressive in the sense that the
compiler can always infer the type held in a particular variable; apart from
one exception, which is described below, type casts of the kind found in
Java and C programs are unnecessary. Static type checking means that
any possible type violation in a program is detected at compile-time rather
than at run-time. Many common programming errors are, therefore, simply
inexpressible in Mercury. A handy secondary benefit of this approach to
typing is that the compiler can generate highly optimized code.

Mercury also supports dynamic typing and type reflection for the rare cases
where such things are necessary. Dynamic typing is supported by a univer-
sal type that can conceal values of any type at all; however, extracting a
concealed value does require a checked run-time type cast operation. Type
reflection allows a program to examine the structure of values and their
types. By way of example, a generic function to compute hash codes for
values of any type depends upon type reflection.

27
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Important!

Mercury is a purely declarative language. This means that values are im-
mutable: there is no destructive assignment. Every computation constructs
a new value for each output. The compiler may well generate code that uses
destructive assignment (e.g., for efficient array updates), but such things are
not directly available to the Mercury programmer.

2.1 The primitive types: int, float, string, and
char

Note! The underlying representation of the primitive types depends upon the
compiler target (C, Java, .Net etc.)

int

Fixed precision integers are represented by the int type. Syntactically, an
int is a sequence of digits, optionally preceded by a minus sign (there is
no unary plus). The sequence of digits may be decimal, hexadecimal (both
uppercase and lowercase are allowed, preceded by 0x), octal (if preceded by
0o), or binary (if preceded by 0b).

Examples: decimal -123, 0, 42; hexadecimal -0x7B, 0x0, 0x2a; octal -0o173,
0o0, 0o52; binary -0b1111011, 0b0, 0b101010.

The sequence 0’x denotes the character code for the character x. For ex-
ample, on an ASCII system 0’a, 0’b, and 0’c denote 97, 98, and 99 respec-
tively.

The int standard library module must be imported to use any of the prim-
itive int operations.

float

Floating point numbers are represented by the float type, which corre-
sponds to the C double type. Syntactically, a float is a decimal floating
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point number (the decimal point is required), optionally preceded by a minus
sign, optionally followed by an integer exponent.

These are all equivalent: 1.414, 1414e-3, .1414e1, 0.01414e2; either e or
E is acceptable as the exponent separator.

The float standard library module must be imported to use any of the
primitive float operations. Constants such as pi and e and more complex
floating point operations, such as the trigonometric functions, are defined in
the math standard library module.

string

A string constant is a sequence of characters enclosed in double quotes.

Examples: " ", "Hello, World!\n", "\‘‘Lawks!\’’ I declared.".

Certain characters have special syntax referred known as character escapes:

\" double quote \\ backslash
\’ single quote \a alert (“beep”)
\b backspace \r carriage return
\f form-feed \t tab
\n newline \v vertical tab

Characters can also be specified by character code using the sequence \xhh\,
where hh is a hexadecimal number, or \ooo\, where ooo is an octal number.
the ASCII character A, for example, can also be written as \x41\ or \101\.

Note! For arcane reasons, it is a Very Bad Idea to include the NUL character,
\x00\, in strings.

A backslash at the end of a line is ignored in string constants. Thus
‘‘abc\

def"

is equivalent to just "abcdef". Otherwise, literal newlines may appear in a
string constant:
‘‘pqr

xyz’’

is equivalent to "pqr\nxyz".

The string standard library module must be imported to use any of the
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primitive string operations. In particular it defines ++, the string concate-
natation function — for example, "foo" ++ "bar" = "foobar".

char

Character constants are represented using the char type and, syntactically,
are single characters (or character escapes or character codes as described
above) enclosed in single quotes. Characters that could be interpreted as
infix operators, such as + and *, should be further enclosed in parentheses.

Examples: ’A’, ’\x41\’, ’\101\’, ’\’’, ’\n’, (’+’), (’*’).

XXX Are we ASCII specific?

The char standard library module must be imported to use any of the
primitive operations on chars.

2.2 Tuples

A tuple is a fixed size vector of values. Syntactically, a tuple type is a comma
separated sequence of type names enclosed in braces, whereas a tuple value
is a comma separated sequence of values enclosed in braces.

Examples: {111, ’b’} is a value of type {int, char}; {1.2, 3, "456"} is
a value of type {float, int, string}; {"a", {"little", "contrived"}}

is a value of type {string, {string, string}}.

Note! Unlike lists (described below), tuples are constructed and deconstructed as
complete entities. There is no such thing as the head or tail of a tuple. XXX

Should we include this note at all? Or move the whole tuples section after lists?

Tuples are occasionally useful for aggregating small numbers of different
types. More often than not it is better style to use a discriminated union
type.
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2.3 Lists

A list is a linear sequence of values sharing the same type. Syntactically, a
list is a comma separated sequence of values enclosed in brackets.

Examples: [] denotes the empty list, regardless of the list type; [1, 2, 3]

is a value of type list(int); [’a’, ’b’, ’c’, ’d’] is a value of type
list(char); [[1], [2, 3], [4]] is a value of type list(list(int)).

It is an error to mix values of different types inside a list because there is
no way to give a type to values such as [1, "2", 3.4].

The list standard library module defines the list type and a wealth of
list operations. If you forget to import the list module then the compiler
will issue warnings like this:

foo.m:031: error: undefined symbol ‘[|]/2’

foo.m:031: (the module ‘list’ has not been imported).

Lists are actually composed of two kinds of building block: [] (the empty
list) and [|] (the non-empty list constructor, pronounced “cons”). If X is
an int, say, and Xs a list(int), then [|](X, Xs) is a list(int) whose
head (first member) is X and whose tail (list of trailing members) is Xs.

Lists are so common that special syntactic sugar exists for them: [X | Xs] is
shorthand for [|](X, Xs); [X, Y, Z | Ws] is shorthand for [X | [Y | [Z | Ws]]];
and [X, Y, Z] is shorthand for [X, Y, Z | []].

2.4 Discriminated union types

Discriminated unions allow the definition of new, structured types. This
example shows a representation of playing cards using discriminated union
types:

:- type playing_card ---> card(rank, suit) ; joker.

:- type rank ---> ace ; two ; three ; four

; five ; six ; seven ; eight

; nine ; ten ; jack ; queen ; king.

:- type suit ---> clubs ; diamonds ; hearts ; spades.
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The data constructors defining the values of the discriminated union types
appear to the right of the arrows: suit has four possible values, rank thir-
teen, and playing_card fifty three (fifty two possible card values from
card(ace, clubs), card(two, clubs), all the way up to card(king, spades),
plus the joker option).

An exhaustive switch on a discriminated union type must test for every
possible top-level data constructor. That is, an exhaustive switch on a
playing_card value need only test for card(_, _) and joker rather than
every specific card instance.

(The term “discriminated union” is used because a type denotes a union of
sets of possible values, each of which is distinguished by its data constructor.)

Data constructors with named fields

The fields of a data constructor can be named:

:- type bank_account ---> account( name :: string,

account_no :: int,

funds :: float ).

We can use field names to access fields directly without having to first de-
construct a bank_account value. That is, rather than writing

BankAcct = account(Name, AcctNo, Funds),

( if Funds >= RequestedSum then

... debit RequestedSum from BankAcct ...

else

... reject debit request ...

)

we can write

( if BankAcct^funds >= RequestedSum then

... debit RequestedSum from BankAcct ...

else

... reject debit request ...

)
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The Mercury compiler automatically generates a field access function for
every named field in a data constructor. The bank_account field access
functions would be defined like this:

account(A, _, _)^name = A.

account(_, B, _)^account_no = B.

account(_, _, C)^funds = C.

Field access functions to “update” named fields are also generated:

( if BankAcct^funds >= RequestedSum then

NewBankAcct = (BankAcct^funds := BankAcct^funds - RequestedSum)

else

... reject debit request ...

)

The expression (BankAcct^funds := X) returns a value identical to BankAcct
except the funds field will contain X. The bank_account field access update
functions would be defined like this:

( account(_, B, C)^name := A ) = account(A, B, C).

( account(A, _, C)^account_no := B ) = account(A, B, C).

( account(A, B, _)^funds := C ) = account(A, B, C).

Note that you do not have to name every field of a data constructor; un-
named fields can only be “read” or “updated” by explicitly deconstructing
or constructing the entire data constructor value.

You are not allowed to use the same field name in different types defined in
the same module. This is an error:

:- type cat ---> cat(name :: string).

:- type dog ---> dog(name :: string).

Instead use distinct field names, such as cat_name and dog_name, or use a
single type with two data constructors (the same field name can be used in
different data constructors of the same type.)

A field access may fail if a data type has more than one data constructor.
For example, given
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:- type playing_card ---> card(card_rank :: rank, card_suit :: suit) ; joker.

A goal featuring the expression Card^card_rank will fail if Card happens
to be a joker.

Field accesses can be chained together.

:- type employee ---> employee(id :: int, contact :: contact_details).

:- type contact_details ---> contact_details(address :: string, phone :: int).

If Employee contains a value of type employee then the expression Employee^contact^address

is the address field of the contact field of the employee constructor.

Nested fields can be updated. The expression Employee^contact^address := NewAddr

denotes a copy of Employee with the address field of the contact field of
the employee data constructor updated to hold NewAddr.

Parentheses can change the meaning of an update expression:
(Employee^contact)^address := NewAddr denotes an updated copy of the
contact field of the employee data constructor (i.e., the type of this expres-
sion is contact_details, not employee.)

One final remark: it is also possible to explicitly define field access functions,
for instance for “virtual fields” that are computed rather than stored in a
data constructor or for update functions that perform sanity checks on their
arguments. User defined field access functions are described fully in Chapter
XXX .

2.5 Polymorphic types

Polymorphic types are types parameterised by type variables. A polymor-
phic binary tree type carrying values at the branches could be defined like
this:

:- type tree(T) ---> leaf ; branch(tree(T), T, tree(T)).

This is just a discriminated union type with a type argument, T. T can
match any type at all, so tree(int), tree(string), tree(list(char))

are all refinements of tree(T).
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Examples: branch(branch(leaf, 1, leaf), 2, branch(leaf, 3, leaf))

is a value of type tree(int); branch(leaf, {’a’, 65}, branch(leaf, {’b’, 66}, leaf))

is a value of type tree({char, int}); and leaf is a value of every tree

type.

The canonical example of a polymorphic data type is the list type defined
in the list standard library module:

:- type list(T) ---> [] ; [T | list(T)].

The maybe type defined in the std_util standard library module is another
useful polymorphic type:

:- type maybe(T) ---> no ; yes(T).

This type is commonly used to represent optional values (had the database
community known about maybe types they never would have invented NULLs
and wrecked the relational model. . . )

Once one has polymorphic types, it is natural to want to define polymorphic
predicates and functions. The list module length function works for lists
of every type thanks to the type argument in its signature (it is just con-
vention that we have reused the name T here — any variable name would
do):

:- func length(list(T)) = int.

length([]) = 0.

length([_ | Xs]) = 1 + length(Xs).

The first clause defines the length of the empty list to be 0; the second clause
defines the length of a non-empty list [_ | Xs] to be 1 for the head (the
underscore says we don’t care what that happens to be) plus the length of
the tail, Xs.

Here is an example of a polymorphic predicate to decide whether a given
value resides in an ordered binary tree of the type we defined at the start of
this section (by ordered we mean that smaller values appear to the left of
larger values in the tree):
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:- pred search(tree(T)::in, T::in) is semidet.

search(branch(L, X, R), Y) :-

O = ordering(X, Y),

( O = (<), search(R, Y)

; O = (=)

; O = (>), search(L, Y)

).

The ordering function is built-in to Mercury and compares any two values
of the same type, returning a result of type comparison_result:

:- type comparison_result ---> (<) ; (=) ; (>).

As you can see, data constructor names don’t necessarily have to be al-
phanumeric. These data constructor names must appear in parentheses to
stop the Mercury parser from interpreting them as infix operators. This is
also an example of overloading, where the same name may be used for more
than one purpose provided there is no ambiguity.

After calling ordering, search switches on O to decide what to do next: if
the value at the current branch, X, is less than the value we are searching
for, Y, then search should proceed down the right subtree, R. If X = Y then
the search terminates successfully. Otherwise, X is greater than Y and the
search should proceed down the left subtree, L. The absence of a clause for
leaf values means that any search that reaches a leaf will fail.

2.6 Equivalence types

Readability is often improved by giving simple names to complex types or
by using more meaningful names for a specific uses of general types:

:- type height == float. % In metres.

:- type radius == float. % In metres.

:- type volume == float. % In cubic metres.

:- func volume_of_cylinder(height, radius) = volume.

:- func volume_of_sphere(radius) = volume.
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XXX Move this stuff about comments to chapter 1. (The % sign introduces a
comment, which extends to the end of the line.) Here we define the types
height, radius and volume to be equivalent to (i.e., interchangeable with)
type float. We could have just declared volume_of_cylinder using

:- func volume_of_cylinder(float, float) = float.

but then we would be morally obliged to include a comment explaining
which arguments correspond to which measurements.

Equivalence types can also be parameterized. For example:

:- type dictionary(Key, Value) == list({Key, Value}).

% search(Dict, Key, Value) unifies Value if there is an association

% for Key in Dict, but fails otherwise.

%

:- pred search(dictionary(Key, Value)::in, Key::in, Value::out) is semidet.

search([{K, V} | Dict], Key, Value) :-

( if Key = K then Value = V else search(Dict, Key, Value) ).

% set(Dict, Key, Value) returns an updated version of Dict

% associating Key with Value.

%

:- func set(dictionary(Key, Value), Key, Value) = dictionary(Key, Value).

set(Dict, Key, Value) = [{Key, Value} | Dict].

2.7 Abstract types

It is virtually always a Bad Idea to reveal implementation detail to the user
of a module. Mercury ensures that predicate and function definitions are
private to a module because they cannot appear in the interface section
of a module. Abstract types allow the same kind of information hiding for
types. An abstract type is one that is declared in the interface section of
a module, but defined in the implementation section.

Here’s how we would use abstract types if we wanted to export the dictionary
type defined above:
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:- module dictionary.

:- interface.

:- type dictionary(Key, Value).

:- pred search(dictionary(Key, Value)::in, Key::in, Value::out) is semidet.

:- func set(dictionary(Key, Value), Key, Value) = dictionary(Key, Value).

:- implementation.

:- import_module list.

:- type dictionary(Key, Value) == list({Key, Value}).

search([{K, V} | Dict], Key, Value) :-

( if Key = K then Value = V else search(Dict, Key, Value) ).

set(Dict, Key, Value) = [{Key, Value} | Dict].

Observe the type declaration in the interface section: it gives the name
of the type and its arguments, but nothing else. Further down, in the
implementation section, we give a definition for dictionary. At some
later point we may reimplement dictionary as an ordered list or binary
tree or some other more efficient structure. Such a change would not affect
the interface of the dictionary module (because dictionary is an abstract
type), so no changes would be required by users of the module.

2.8 Higher order types

Mercury considers functions and predicates to be values just as much as it
does ints, strings and lists. Consider the higher order map function (as
defined in the list standard library module) which takes a function from
T1 values to T2 values, a list of T1 values, and returns a list of T2 values:

:- func map(func(T1) = T2, list(T1)) = list(T2).

map(_, []) = [].

map(F, [X | Xs]) = [F(X) | map(F, Xs)].

The first clause says that mapping over the empty list returns the empty
list. The second clause says that mapping the function F over the non-empty
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list [X | Xs] is the list whose head is F(X) (i.e., the result of applying F to
X) and whose tail is the result of mapping F over Xs.

The thing to observe here is the argument type func(T1) = T2, which il-
lustrates the syntax for function types.

This next example illustrates the syntax for predicate types (this predicate
is also defined in the list standard library module):

:- pred filter(pred(T), list(T), list(T), list(T) ).

:- mode filter(in(pred(in) is semidet), in, out, out ) is det.

filter(_, [], [], []).

filter(P, [X | Xs], Ys, Zs) :-

filter(P, Xs, Ys0, Zs0),

( if P(X) then Ys = [X | Ys0], Zs = Zs0

else Ys = Ys0, Zs = [X | Zs0]

).

the goal filter(P, As, Bs, Cs) unifies Bs with the list of members of As
that satisfy P and unifies Cs with the list of members of As that don’t. The
first clause says that filtering the empty list yields two empty lists. The
second clause says that filtering [X | Xs] through the predicate P is the
result of filtering Xs through P and adding X to the first result if P(X) (i.e.,
if P succeeds given X), or adding X to the second result if it doesn’t.

The first new thing here is the separation of type information from mode
information in the declarations for filter. Mercury requires a separate
mode declaration if you do not supply mode and determinism details in the
pred declaration. The two declarations could be combined thus

:- pred filter( pred(T)::in(pred(in) is semidet),

list(T)::in, list(T)::out, list(T)::out) is det.

However, having separate pred and mode declarations highlights that the
type of filter’s higher order argument is written pred(T). (Separate mode

declarations are examined in more detail in Chapter XXX .) XXX Do I need

to explain the parameterised in mode?

In general, higher order programming with predicates is more complicated
than with functions because of the need to also specify the modes for the
higher order arguments.
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2.9 univ, the universal type

The univ type provides support for dynamically typed programming. Mer-
cury’s type system is so expressive that univ is hardly ever necessary. How-
ever, should you require it, here is (a slightly abridged version of) the inter-
face to univ as defined in the univ standard library module:

:- type univ.

:- func univ(T) = univ.

:- pred univ_to_type(univ::in, T::out) is semidet.

The univ function turns an argument of any type into a univ value (this
is an example of overloading a name for a type and a function). The
univ_to_type predicate turns a univ value into a value of type T (what
T denotes depends upon the context of the call to univ_to_type) if that is
the type of value contained in the univ, and fails otherwise.

We said earlier that a value like [1, "2", 3.4] would be rejected because it
cannot be given a type. This is true, but we can achieve much the same end
by writing [univ(1), univ("2"), univ(3.4)], which does have a type,
list(univ).

To illustrate the use of univ_to_type, here is a program to print out univs:

:- module print_univs.

:- interface.

:- import_module io.

:- pred main(io::di, io::uo) is det.

:- implementation.

:- import_module list, string, univ.

main(!IO) :-

print_univ(univ(1), !IO),

print_univ(univ("2"), !IO),

print_univ(univ(3.4), !IO),

print_univ(univ({5, 6, 7}), !IO).

:- pred print_univ(univ::in, io::di, io::uo) is det.
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print_univ(U, !IO) :-

( if univ_to_type(U, C) then io.format("a char, %c\n", [c(C)], !IO)

else if univ_to_type(U, S) then io.format("a string, \‘‘%s\’’\n", [s(S)], !IO)

else if univ_to_type(U, I) then io.format("an int, %d\n", [i(I)], !IO)

else if univ_to_type(U, F) then io.format("a float, %f\n", [f(F)], !IO)

else io.format("no idea...\n", [], !IO)

).

Compiling and running this program, we get

> mmc --make print_univs

Making Mercury/int3s/print_univs.int3

Making Mercury/cs/print_univs.c

Making Mercury/os/print_univs.o

Making print_univs

> ./print_univs

an int, 1

a string, ‘‘2’’

a float, 3.400000

no idea...

So how does univ_to_type know that C is a char, S a string, and so forth?
The answer is the compiler automatically infers these types from context:
the argument of a c data constructor in an io.format argument list must be
a char; the argument of an s data constructor must be a string; similarly
I must be an int and F a float. Information about each result type is
supplied to the univ_to_type calls via extra arguments inserted by the
Mercury compiler.

Full details of the run-time type information (RTTI) scheme are beyond the
scope of this book. The interested reader is referred to the documentation
for the std_util module in the Mercury Library Reference Manual and the
relevant parts of the Mercury Reference Manual.

2.10 Useful types defined in the Mercury standard
library

The Mercury standard library defines many useful types, the most common
of which are examined in more detail in Chapter XXX . These include
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bool for Boolean values, digraph for directed graph processing, list for
stacks and sequences, map for dictionaries, queue for first-in first-out (FIFO)
queues, pqueue for priority queues, random for random numbers, and set

for sets. Many more types are defined in the standard library, but the above
suffice for the majority of data structures.

2.11 More advanced types. . .

Mercury’s type system includes two more advanced aspects each with a
separate chapter. Chapter XXX describes type classes and existentially
quantified types which exist to support object oriented programming styles.
Chapter XXX describes types with user-defined equality and comparison
relations; these are so-called non-canonical types in which a given semantic
value may be represented in more than one way.

XXX I haven’t really mentioned type inference, nor have I mentioned explicit type

qualification of local vars.



Chapter 3

The Mercury mode system

Last edited 2020-03-23 23:40

Mercury programs are really just logical formulae written down using a
particular syntax. The Mercury compiler, however, needs extra information
to turn these logical formulae into something the computer can execute.
Specifically, it needs to know which arguments of a predicate can be inputs
and which outputs. This information is conveyed using argument modes and
determinism categories.

This chapter explains the mode system and how it is used.

3.1 Predicates and procedures

Every predicate must have a declaration specifying which arguments can
be inputs and which outputs. Consider the following implementation of a
telephone directory in which phone numbers can be looked-up by name:

:- pred phone(string::in, int::out) is semidet.

phone("Ian", 66532).

phone("Julien", 66532).

phone("Peter", 66540).

phone("Ralph", 66532).

phone("Zoltan", 66514).

43
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The style of pred declaration used here is called a pred-mode declaration
and is syntactic sugar for two separate declarations:

:- pred phone(string, int).

:- mode phone(in, out) is semidet.

The plain pred declaration tells us the argument types; the mode declaration
tells us the argument modes (in or out) and the corresponding determinism
category (semidet).

It is natural to want to call some predicates in more than one way — if we
want to use phone to perform “reverse look-ups”, for instance. In such cases
more than one mode declaration is necessary (pred-mode shorthand can only
be used for singly-moded predicates).

To allow reverse look-ups with phone all that is necessary is to (a) use
separate pred and mode declarations and (b) add an extra mode declaration:

:- pred phone(string, int).

:- mode phone(in, out) is semidet.

:- mode phone(out, in) is nondet.

The first mode declaration

:- mode phone(in, out) is semidet.

says that if we call phone giving its first argument as an input and taking
its second as an output, then the result is semideterministic: every name in
the directory appears exactly once, but not all names are listed. The goal
phone("Harald", HaraldsNum) will obviously fail, but phone("Ralph", RalphsNum)

will succeed unifying RalphsNum with 66532.

The second mode declaration

:- mode phone(out, in) is nondet.

says that if we call phone with its second argument given as input and
take its first argument as output, then the result is nondeterministic: it
can fail because the goal phone(Person, 12345) will fail, but the goal
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phone(Person, 66532) has no less than three possible solutions — Person = "Ian",
Person = "Julien", and Person = "Ralph" — each of which will be com-
puted on backtracking.

Note! Each mode declaration specifies a procedure to be derived from the predicate
definition. The compiler generates code separately for each procedure of
a predicate, reordering goals to ensure that every variable is instantiated
(e.g., by some earlier unification or call) before it is used in an input in
a unification or call. Mode information is also used to decide whether a
unification with a data constructor is a construction or deconstruction.

The compiler verifies that the determinism category for a procedure properly
describes the behaviour of the procedure. The compiler will issue an error if a
procedure can fail or have multiple solutions when its declared determinism
category says otherwise. Moreover, the compiler will report an error if a
deterministic switch is incomplete, telling you which cases have been missed
(Prolog programmers dream of having error detection like this. . . )

Implied modes

An implied mode is one where an output argument is supplied as an input in
a procedure call. Consider the goal phone("Ralph", 66540). The compiler
gets around this situation by placing a new, temporary variable in the output
position and then adding a unification goal, giving phone("Ralph", Tmp), Tmp = 66540.

3.2 The determinism categories

A determinism category tells us whether a particular procedure can fail and
whether it may have more than one solution:

Determinism category Number of solutions

det 1
semidet ≤ 1
multi ≥ 1
nondet ≥ 0
failure 0

There are three other determinism categories that are only occasionally
needed: erroneous, which is used for predicates that only terminate by
throwing an exception (exceptions are described in Chapter XXX ), and
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cc_multi and cc_nondet which are used for committed-choice nondeter-
minism (see Chapter XXX ).

Some examples

:- pred square(int::in, int::out) is det.

square(X, X * X).

square is det: it cannot fail and every input has a single solution for the
output.

:- pred absolute_square_root(float::in, float::out) is semidet

absolute_square_root(X, AbsSqrtX) :-

X >= 0.0,

AbsSqrtX = math.sqrt(X).

absolute_square_root is semidet: it fails for negative inputs while non-
negative inputs each have a single solution.

:- pred small_prime(int::out) is multi.

small_prime(2).

small_prime(3).

small_prime(5).

small_prime(7).

small_prime is multi: it cannot fail and it has more than one solution.

:- pred small_prime_factor(int::in, int::out) is nondet.

small_prime_factor(X, P) :-

small_prime(P),

X mod P = 0.

small_prime_factor is nondet: small_prime_factor(11, A), for instance,
will fail, but small_prime_factor(6, A) has solutions A = 2 and A = 3.

Finally, the built-in predicate false, which takes no arguments, has deter-
minism failure: it never succeeds. The opposite of false is the built-in
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predicate true which has no arguments and always succeeds (and is there-
fore det).

Note! The determinism category of a goal with no output arguments is either det,
semidet, or failure. Consider the following:

:- pred has_small_prime_factor(int::in) is semidet.

has_small_prime_factor(X) :-

small_prime(P),

X mod P = 0.

Because there are no outputs, Mercury ensures that the goal
has_small_prime_factor(15), say, will not succeed more than once, even
though small_prime(P) has two solutions, P = 3 and P = 5, satisfying
15 mod P = 0.

3.3 Determinism

These rules specify how determinism categories for compound goals are de-
rived (with a little experience this quickly becomes second nature). The
determinism category of a goal is derived from the instantiation state of its
arguments at the time the goal is executed.

Note! Remember that the compiler reorders the goals in a predicate separately
for each mode declaration for the predicate. A running program does not
make decisions about which procedures should be executed when calling
predicates; this is decided in advance by the Mercury compiler.

Unifications

Whether a unification is a construction, deconstruction, assignment or equal-
ity test depends upon which variables are instantiated and which are not at
the time the unification is executed.

A unification X = data_ctor(Y1, Y2, Y3) is a construction if Y1, Y2, and
Y3 are initially instantiated and X is not. Constructions are always det.
Afterwards, X will be instantiated.
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A unification X = data_ctor(Y1, Y2, Y3) is a deconstruction if X is ini-
tially instantiated. Afterwards, Y1, Y2, and Y3 will be instantiated. De-
constructions are almost always semidet (in certain circumstances a decon-
struction may have determinism category det if it is guaranteed to succeed
or failure if it is guaranteed to fail).

A unification X = Y is an assignment if precisely one of X or Y is initially
instantiated. Afterwards, both variables will be instantiated. Assignments
are always det.

A unification X = Y is an equality test if both X and Y are initially instanti-
ated. Equality tests are always semidet.

Procedure calls

For a predicate call p(X1, X2, X3), which procedure of p is executed de-
pends upon which mode declaration for predicate p best matches the in-
stantiation states of X1, X2, and X3 at the time the call is executed. The
determinism category of the goal is that of the called procedure, adjusted
for any implied modes (i.e., extra unifications added because some output
arguments of the procedure are already instantiated at the time of the call).

For example, the goal phone("Zoltan", ZoltansNumber) is compiled as a
call to the (in, out) is det procedure of phone. The goal phone(Person, 66540)

is compiled as a call to the (out, in) is nondet procedure of phone. The
goal phone("Ralph", 66532) requires an implied mode and may be com-
piled either as phone("Ralph", Tmp), Tmp = 66532 or
phone(Tmp, 66532), Tmp = "Ralph", both of which are semidet.

Conjunction

A sequence of goals separated by commas, G1, G2, G3, ..., is called a
conjunction. The commas are pronounced “and” and each subgoal is called
a conjunct.

A conjunction can fail if any conjunct can fail.

A conjunction can succeed if every conjunct can succeed.

A conjunction can have multiple solutions if it can succeed and one or more
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conjuncts have multiple solutions.

Note! These rules are a conservative (i.e., safe) approximation. For example, the
compiler will conclude that conjunction small_prime(X), X = 4 is semidet,
even though we can see that this goal has to fail.

Disjunction

A sequence of goals separated by semicolons, (G1 ; G2 ; G3 ; ...), is
called a disjunction. The semicolons are pronounced “or” and each subgoal
is called a disjunct.

A disjunction can succeed if any disjunct can succeed.

A disjunction can have multiple solutions if more than one disjunct can
succeed or one or more disjuncts can have multiple solutions.

Note! Switches are a special case. A switch is a disjunction that deconstructs a
particular variable against a different data constructor in each disjunct. If,
apart from the deconstructions, every disjunct is det, then the switch is det
if the set of deconstructions is exhaustive and semidet if not.

For example, even though both p and q (below) define switches on X, p is
det because its switch is exhaustive, whereas q is semidet because its switch
is not:

:- type ott ---> one ; two ; three.

:- pred p(ott::in, int::out) is det.

p(X, Y) :- ( X = one, Y = 1 ; X = two, Y = 2 ; X = three, Y = 3 ).

:- pred q(ott::in, int::out) is semidet.

q(X, Y) :- ( X = one, Y = 1 ; X = three, Y = 3 ).

Note! Disjunction binds less tightly than conjunction:
( G11, G12 , G13 ; G21 ; G31, G32 )

is equivalent to
( (G11, G12, G13) ; G21 ; (G31, G32) ).

Note! A definition spanning multiple clauses is equivalent to a definition using a
single clause containing a disjunction. That is
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p(one, 1).

p(two, 2).

p(three, 3).

is semantically and operationally identical to

p(X, Y) :- ( X = one, Y = 1 ; X = two, Y = 2 ; X = three, Y = 3 ).

Note! If any disjunct instantiates a variable that is used outside the disjunction,
then every disjunct in the disjunction must also instantiate that variable.
That is, the Mercury compiler will report a mode error if a program contains
a disjunction that instantiates X in some disjuncts, but not others, and X

is also needed outside the disjunction. For instance, the following is illegal
because Y, which appears outside the disjunction, is instantiated in the first
and second disjuncts, but not the third:

:- pred p(number::in, int::out) is det.

p(X, Y) :- ( X = one, Y = 1 ; X = two, Y = 2 ; X = three ).

Negation

A goal (not G) is called the negation of G. The negation fails if G succeeds,
and vice versa. The negation succeeds if G fails and fails if G succeeds.

Note! G is said to occur inside a negated context and is not allowed to instantiate
variables that also occur outside the negation.

Note! Negation binds more tightly than conjunction, hence not G1, G2, ...

is equivalent to (not G1), G2, .... To negate a conjunction, put the
conjunction in parentheses: not (G1, G2, ...)

Note! X \= Y is syntactic sugar for not (X = Y).

If-then-else goals

The declarative semantics for a goal ( if Gc then Gt else Ge ) are iden-
tical to those of ( Gc, Gt ; (not Gc), Ge ). The operational semantics
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are more efficient, though: if there are no solutions to Gc, the program
immediately executes Ge.

If any of Gc, Gt, or Ge can fail then the if-then-else can fail.

If any of Gc, Gt, or Ge can have multiple solutions then the if-then-else
can have multiple solutions.

Note! Gc is not allowed to instantiate variables that are used outside the if-then-
else. This is because, semantically, Gc appears in a negated context. It is
all right, however, for Gc to instantiate variables that are used by Gt.

Note! Execution can backtrack into Gc. For example,

( if small_prime(X), X > 2 then Y = X * X else Y = -1 )

has solutions Y = 9, Y = 25, and Y = 49.

Prolog programmers take note: unlike Mercury, Prolog programs com-
mit to the first solution of Gc. The Prolog equivalent of the above goal would
have Y = 9 as its only solution, not Y = 25 or Y = 49.

Note! ( Gc -> Gt ; Ge ) is an alternative, albeit old-fashioned, syntax for ( if Gc then Gt else Ge ).

3.4 Procedures and code reordering

The aim of this section is to give the reader some understanding of code
reordering. This knowledge is not required to write Mercury programs, but
it can help the programmer understand mode-related error messages from
the compiler.

We will illustrate using the append predicate defined in the list standard li-
brary module. The declarative semantics of append(Xs, Ys, Zs) is that the
list Zs is the concatentation of lists Xs and Ys. So append([1], [2, 3], [1, 2, 3])

is true, but append([2, 3], [1], [1, 2, 3]) is not.

:- pred append(list(T), list(T), list(T)).

:- mode append(in, in, out) is det.

:- mode append(out, out, in) is multi.

append(Xs, Ys, Zs) :-
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(

Xs = [], Zs = Ys

;

Xs = [X | Xs0], append(Xs0, Ys, Zs0), Zs = [X | Zs0]

).

This code needs no reordering for the (in, in, out) is det mode, where
Xs and Ys start off instantiated and Zs starts off uninstantiated. The first
disjunct works like this:

1 Xs = [] Deconstruct Xs
2 Zs = Ys Assign Zs

and the second disjunct works like this:

1 Xs = [X | Xs0] Deconstruct Xs, instantiating X and Xs0

2 append(Xs0, Ys, Zs0) Call the (in, in, out) procedure, instanti-
ating Zs0

3 Zs = [X | Zs0] Construct Zs

Because each disjunct deconstructs Xs in a different way, this disjunction
is a switch. Because the switch is exhaustive, and the other goals in each
disjunct are det, the switch as a whole is det.

The (out, out, in) is multi mode, where only Zs is initially instanti-
ated, does require some reordering in order to ensure that every variable is
instantiated before it is needed. The first disjunct becomes

1 Xs = [] Construct Xs
2 Zs = Ys Assign Ys

and the second disjunct becomes

1 Zs = [X | Zs0] Deconstruct Zs, instantiating X and Zs0

2 append(Xs0, Ys, Zs0) Call the (out, out, in) procedure, instan-
tiating Xs0 and Ys

3 Xs = [X | Xs0] Construct Xs

Since this disjunction is not a switch and the first disjunct always leads to
a solution, the disjunction as a whole is multi in this case.

Note! The Mercury compiler reorders code as little as possible. However, program-
mers should not write code that depends upon any particular order of evalua-
tion — code can also be reordered by various optimizations! In particular, it
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is a bad idea to write something like ( if X \= 0, Z = Y / X then ... else ... ),
assuming that the test for X being non-zero will guarantee that this code
cannot lead to a division-by-zero error at run-time. It is certainly possible
that the test and the division may be compiled the other way around.

3.5 Insts and subtypes

So far we have only talked about variables going from being uninstantiated
to being instantiated. It turns out to be useful to also keep track of the
possible values a variable can have when it is instantiated. Mercury uses
insts for this purpose. An inst represents the possible instantiation states
of a variable at a particular point in a program.

The most basic insts are free, meaning a variable is uninstantiated, and
ground, meaning a variable is instantiated with some unknown value of the
appropriate type.

The built-in modes in and out are defined using the following syntax:

:- mode in == (ground >> ground).

:- mode out == (free >> ground).

That is, an in mode argument of a goal must be ground (i.e., be instantiated
with some value) before the goal is executed and will also be ground after-
wards, while an out mode argument must be free (i.e., not instantiated)
before the goal is executed, but will be ground afterwards.

Note! If a goal fails or backtracks then the insts of its arguments stay the same
as they were before the goal was tried.

Specialised insts

It is occasionally useful to define new insts matching only subsets of possible
values that a variable might have. Consider the inst non_empty_list which
is defined in the list standard library module:

:- inst non_empty_list == bound([ground | ground]).
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:- pred head(list(T), T).

:- mode head(in, out) is semidet.

:- mode head(in(non_empty_list), out) is det.

head(Xs, X) :- Xs = [X | _].

The inst declaration defines non_empty_list to mean “bound to the list
data constructor [|] whose first argument has inst ground and whose second
argument has inst ground”.

The first mode for head tells us that if all we know about the first argument
is that it is ground (i.e., it could be bound to any value of type list(T),
including []) then a call to head is semidet.

The second mode for head says that if we know the first argument is a non-
empty list (i.e., whatever value it has, it’s top-most data constructor must
be [|] with two ground arguments) then a call to head is guaranteed to
succeed.

The second mode declaration uses the built-in parameterised form of the in

argument mode, which is defined like this:

:- mode in(I) == (I >> I).

where I is an inst parameter. in(non_empty_list) is therefore equivalent
to writing (non_empty_list >> non_empty_list). There is also a built-in
parameterised out argument mode, defined thus:

:- mode out(I) == (free >> I).

When compiling the procedure for the second mode of head, the Mercury
compiler uses the information about the inst of the first argument, Xs, to
infer that the goal Xs = [X | _] must (a) be a deconstruction and (b) must
succeed because whatever value Xs has matches the pattern [_ | _].

Note! A value with a bound(...) inst can always be used in a context where a
ground value is expected, but not the other way around.

XXX Mention the alternative inst definition syntax.
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Recursively defined insts

It is possible to describe quite complicated instantiation states. The follow-
ing insts, for instance, describe lists of even and odd lengths respectively:

:- inst even_length_list == bound([] ; [ground | odd_length_list]).

:- inst odd_length_list == bound([ground | even_length_list]).

The first inst declaration defines even_length_list to mean “bound either
to [] or to [|] with two arguments, the first having inst ground and
the second having inst odd_length_list (multiple possibilities in a bound

expression are separated by semicolons).

The second inst declaration defines odd_length_list to mean “bound to
[|] with two arguments, the first having inst ground and the second having
inst even_length_list.”

Partial instantiation

A partially instantiated value is one whose inst is bound(...) where the
... part contains free sub-insts, either directly or indirectly.

Partial instantiation is not currently supported for several reasons, including
the difficulty of analysing such code, the difficulty of maintaining such code,
and the difficulty of compiling such code efficiently.

3.6 Uniqueness

A bound(...) inst is said to be shared — that is, it corresponds to a value
that may be referred to, directly or indirectly, by more than one variable at
a given point in the program.

Mercury has a special inst, unique, which is like ground, but it means
that there is precisely one reference to the unique data at this point in the
program. The counterpart to unique, is clobbered. A variable with inst

clobbered may never be used again (e.g., because the value it refers to is
now out-of-date or has been overwritten with something else).
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The most common use of uniqueness is for managing IO. All the IO op-
erations defined in the io standard library module include two arguments
of type io, with modes di and uo respectively. di stands for “destructive
input” and uo stands for “unique output”. These modes are built-in and
defined thus:

:- mode di == (unique >> clobbered).

:- mode uo == (free >> unique).

To illustrate, consider these pred declarations taken from the io module:

:- pred io.write_string(string::in, io::di, io::uo) is det.

:- pred io.write_int(int::in, io::di, io::uo) is det.

:- pred io.nl(io::di, io::uo) is det.

and the following code snippet:

io.write_string("The meaning of life is ", IO0, IO1),

io.write_int(42, IO1, IO2),

io.nl(IO2, IO3)

The io type arguments denote “states of the world”. These io states are
updated when IO actions are performed. One can never go back to an
earlier state (you can’t unplay a piece of music or unprint a document),
so each IO action clobbers the io state passed to it and produces and
new io state as its result. Similarly, because one cannot copy the state
of the world, io states have to be unique. These constraints ensure that
the above code snippet executes in the expected order — that is, first the
string ‘‘The meaning of life is ’’ will be printed (clobbering IO0 and
producing IO1), then the number 42 (clobbering IO1 and producing IO2),
and finally a newline (clobbering IO2 and producing IO3).

Say we were to accidentally reuse IO0 in the second goal:

io.write_string("The meaning of life is ", IO0, IO1),

io.write_int(42, IO0, IO2),

io.nl(IO2, IO3)



3.7. HIGHER-ORDER MODES 57

The Mercury compiler will report the following error (line 27 in file foo.m

is the call to io.write_string):

foo.m:027: In clause for ‘main(di, uo)’:

foo.m:027: in argument 2 of call to predicate ‘io.write_string/3’:

foo.m:027: unique-mode error: the called procedure would clobber

foo.m:027: its argument, but variable ‘IO0’ is still live.

Note! Procedures that can clobber arguments must have determinism category det

or cc_multi. They must always succeed and produce a single result. The
reason for this is that once an argument is clobbered, which could happen
at any point during the execution of the procedure, there is no way of un-
clobbering it on failure or backtracking. Consequently it is also an error
for code to backtrack into such procedures. For the rare cases where one
needs to do such things, the reader is referred to the section on backtrackable
destructive update in the Mercury reference manual which discusses “mostly
uniqueness”.

Other modules in the standard library that use uniqueness are array and
store. The array module implements arrays with O(1) look-up and set
operations. It achieves this by using destructive update for the array set
operation. This is quite safe because arrays are unique: the ‘old’ version of
the array is clobbered by the update operation so it can never be referred
to again; the ‘new’ version of the array is simply the updated ‘old’ version.
The store module allows one to construct safe, pointer-based structures.
Pointer referents can be accessed and updated in O(1) time by using the
same technique as for arrays. Chapter XXX describes these modules in
more detail.

3.7 Higher-order modes

XXX Fill this out.

3.8 Committed-choice nondeterminism

XXX Fill this out.
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The cc_nondet and cc_multi modes. There may be multiple solutions to
a cc predicate, but you will only get one of them.

The compiler will report an error if a program can backtrack into a committed-
choice goal: all goals following a committed-choice goal must be guaranteed
to succeed. Programming under this restriction is quite burdensome.

If all solutions to a committed-choice predicate are equivalent, in the sense
that, no matter which solution you get, the observable behaviour of your pro-
gram will be the same, then you can use the built-in function promise_only_solution

to escape from the committed-choice context.


